Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612704

RESUMO

This study investigates the toxic effect of harmful materials, unfiltered by the placenta, on neonatal umbilical cord (UC) vessels, focusing on stress-induced adaptations in transcriptional and translational processes. It aims to analyze changes in pathways related to mRNA condensate formation, transcriptional regulation, and DNA damage response under maternal smoking-induced stress. UC vessels from neonates born to smoking (Sm) and nonsmoking mothers (Ctr) were examined. Immunofluorescence staining and confocal microscopy assessed the localization of key markers, including Transcription Complex Subunit 1 (CNOT1) and the largest subunit of RNA polymerase II enzyme (RPB1). Additionally, markers of DNA damage response, such as Poly(ADP-ribose) polymerase-1, were evaluated. In Sm samples, dissolution of CNOT1 granules in UC vessels was observed, potentially aiding stalled translation and enhancing transcription via RPB1 assembly and translocation. Control vessels showed predominant cytoplasmic RPB1 localization. Despite adaptive responses, Sm endothelial cells exhibited significant damage, indicated by markers like Poly(ADP-ribose) polymerase-1. Ex vivo metal treatment on control vessels mirrored Sm sample alterations, emphasizing marker roles in cell survival under toxic exposure. Maternal smoking induces specific molecular adaptations in UC vessels, affecting mRNA condensate formation, transcriptional regulation, and DNA damage response pathways. Understanding these intricate molecular mechanisms could inform interventions to improve neonatal health outcomes and mitigate adverse effects of toxic exposure during pregnancy.


Assuntos
Distrofias de Cones e Bastonetes , Células Endoteliais , Recém-Nascido , Humanos , Feminino , Gravidez , Regulação da Expressão Gênica , Transcrição Gênica , Poli(ADP-Ribose) Polimerases , RNA Mensageiro/genética , Fatores de Transcrição
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338890

RESUMO

We recently demonstrated that 1,6-hexanediol inhibits the formation of assemblysomes. These membraneless cell organelles have important roles in co-translational protein complex assembly and also store halfway translated DNA damage response proteins for a timely stress response. Recognizing the therapeutic potential of 1,6-hexanediol in dismantling assemblysomes likely to be involved in chemo- or radiotherapy resistance of tumor cells, we initiated an investigation into the properties of 1,6-hexanediol. Our particular interest was to determine if this compound induces DNA double-strand breaks by releasing the BLM helicase. Its yeast ortholog Sgs1 was confirmed to be a component of assemblysomes. The BLM helicase induces DNA damage when overexpressed due to the DNA double-strand breaks it generates during its normal function to repair DNA damage sites. It is evident that storing Sgs1 helicase in assemblysomes is crucial to express the full-length functional protein only in the event of DNA damage. Alternatively, if we dissolve assemblysomes using 1,6-hexanediol, ribosome-nascent chain complexes might become targets of ribosome quality control. We explored these possibilities and found, through the Drosophila wing-spot test assay, that 1,6-hexanediol induces DNA double-strand breaks. Lethality connected to recombination events following 1,6-hexanediol treatment can be mitigated by inducing DNA double-strand breaks with X-ray. Additionally, we confirmed that SMC5 recruits DmBLM to DNA damage sites, as knocking it down abolishes the rescue effect of DNA double-strand breaks on 1,6-hexanediol-induced lethality in Drosophila melanogaster.


Assuntos
DNA Helicases , Proteínas de Drosophila , Drosophila melanogaster , Glicóis , Animais , DNA/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Recombinação Homóloga , RecQ Helicases/genética , RecQ Helicases/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958852

RESUMO

We aimed to investigate the contribution of co-translational protein aggregation to the chemotherapy resistance of tumor cells. Increased co-translational protein aggregation reflects altered translation regulation that may have the potential to buffer transcription under genotoxic stress. As an indicator for such an event, we followed the cytoplasmic aggregation of RPB1, the aggregation-prone largest subunit of RNA polymerase II, in biopsy samples taken from patients with invasive carcinoma of no special type. RPB1 frequently aggregates co-translationally in the absence of proper HSP90 chaperone function or in ribosome mutant cells as revealed formerly in yeast. We found that cytoplasmic foci of RPB1 occur in larger sizes in tumors that showed no regression after therapy. Based on these results, we propose that monitoring the cytoplasmic aggregation of RPB1 may be suitable for determining-from biopsy samples taken before treatment-the effectiveness of neoadjuvant chemotherapy.


Assuntos
RNA Polimerase II , Proteínas de Saccharomyces cerevisiae , Humanos , RNA Polimerase II/genética , Terapia Neoadjuvante , Agregados Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
RNA ; 29(10): 1557-1574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460154

RESUMO

Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RecQ Helicases/genética , Ácido Edético/metabolismo , Dano ao DNA , RNA/metabolismo , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
5.
Genome Biol ; 24(1): 30, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36803582

RESUMO

BACKGROUND: The Ccr4-Not complex is mostly known as the major eukaryotic deadenylase. However, several studies have uncovered roles of the complex, in particular of the Not subunits, unrelated to deadenylation and relevant for translation. In particular, the existence of Not condensates that regulate translation elongation dynamics has been reported. Typical studies that evaluate translation efficiency rely on soluble extracts obtained after the disruption of cells and ribosome profiling. Yet cellular mRNAs in condensates can be actively translated and may not be present in such extracts. RESULTS: In this work, by analyzing soluble and insoluble mRNA decay intermediates in yeast, we determine that insoluble mRNAs are enriched for ribosomes dwelling at non-optimal codons compared to soluble mRNAs. mRNA decay is higher for soluble RNAs, but the proportion of co-translational degradation relative to the overall mRNA decay is higher for insoluble mRNAs. We show that depletion of Not1 and Not4 inversely impacts mRNA solubilities and, for soluble mRNAs, ribosome dwelling according to codon optimality. Depletion of Not4 solubilizes mRNAs with lower non-optimal codon content and higher expression that are rendered insoluble by Not1 depletion. By contrast, depletion of Not1 solubilizes mitochondrial mRNAs, which are rendered insoluble upon Not4 depletion. CONCLUSIONS: Our results reveal that mRNA solubility defines the dynamics of co-translation events and is oppositely regulated by Not1 and Not4, a mechanism that we additionally determine may already be set by Not1 promoter association in the nucleus.


Assuntos
Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Códon/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Solubilidade , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Sci Rep ; 12(1): 5007, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322122

RESUMO

Histone variants are different from their canonical counterparts in structure and are encoded by solitary genes with unique regulation to fulfill tissue or differentiation specific functions. A single H4 variant gene (His4r or H4r) that is located outside of the histone cluster and gives rise to a polyA tailed messenger RNA via replication-independent expression is preserved in Drosophila strains despite that its protein product is identical with canonical H4. In order to reveal information on the possible role of this alternative H4 we epitope tagged endogenous H4r and studied its spatial and temporal expression, and revealed its genome-wide localization to chromatin at the nucleosomal level. RNA and immunohistochemistry analysis of H4r expressed under its cognate regulation indicate expression of the gene throughout zygotic and larval development and presence of the protein product is evident already in the pronuclei of fertilized eggs. In the developing nervous system a slight disequibrium in H4r distribution is observable, cholinergic neurons are the most abundant among H4r-expressing cells. ChIP-seq experiments revealed H4r association with regulatory regions of genes involved in cellular stress response. The data presented here indicate that H4r has a variant histone function.


Assuntos
Cromatina , Drosophila , Animais , Cromatina/genética , Drosophila/genética , Histonas/genética , Nucleossomos , Receptores Histamínicos H4/genética
7.
Cell Rep ; 36(9): 109633, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469733

RESUMO

In this work, we show that Not4 and Not5 from the Ccr4-Not complex modulate translation elongation dynamics and change ribosome A-site dwelling occupancy in a codon-dependent fashion. These codon-specific changes in not5Δ cells are very robust and independent of codon position within the mRNA, the overall mRNA codon composition, or changes of mRNA expression levels. They inversely correlate with codon-specific changes in cells depleted for eIF5A and positively correlate with those in cells depleted for ribosome-recycling factor Rli1. Not5 resides in punctate loci, co-purifies with ribosomes and Rli1, but not with eIF5A, and limits mRNA solubility. Overexpression of wild-type or non-complementing Rli1 and loss of Rps7A ubiquitination enable Not4 E3 ligase-dependent translation of polyarginine stretches. We propose that Not4 and Not5 modulate translation elongation dynamics to produce a soluble proteome by Rps7A ubiquitination, dynamic condensates that limit mRNA solubility and exclude eIF5A, and a moonlighting function of Rli1.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fator de Iniciação 5 em Eucariotos/metabolismo , Elongação Traducional da Cadeia Peptídica , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Repressoras/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Fator de Iniciação 5 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Fatores de Iniciação de Peptídeos/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Repressoras/genética , Subunidades Ribossômicas Menores/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
8.
Cell Rep ; 30(11): 3851-3863.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187554

RESUMO

Cancer therapy is limited, in part, by lack of specificity. Thus, identifying molecules that are selectively expressed by, and relevant for, cancer cells is of paramount medical importance. Here, we show that peptidyl-prolyl-cis-trans-isomerase (PPIase) FK506-binding protein 10 (FKBP10)-positive cells are present in cancer lesions but absent in the healthy parenchyma of human lung. FKBP10 expression negatively correlates with survival of lung cancer patients, and its downregulation causes a dramatic diminution of lung tumor burden in mice. Mechanistically, our results from gain- and loss-of-function assays show that FKBP10 boosts cancer growth and stemness via its PPIase activity. Also, FKBP10 interacts with ribosomes, and its downregulation leads to reduction of translation elongation at the beginning of open reading frames (ORFs), particularly upon insertion of proline residues. Thus, our data unveil FKBP10 as a cancer-selective molecule with a key role in translational reprogramming, stem-like traits, and growth of lung cancer.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Biossíntese de Proteínas , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptidilprolil Isomerase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ribossomos/metabolismo
9.
Nat Struct Mol Biol ; 26(2): 110-120, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30692646

RESUMO

The assembly of large multimeric complexes in the crowded cytoplasm is challenging. Here we reveal a mechanism that ensures accurate production of the yeast proteasome, involving ribosome pausing and co-translational assembly of Rpt1 and Rpt2. Interaction of nascent Rpt1 and Rpt2 then lifts ribosome pausing. We show that the N-terminal disordered domain of Rpt1 is required to ensure efficient ribosome pausing and association of nascent Rpt1 protein complexes into heavy particles, wherein the nascent protein complexes escape ribosome quality control. Immunofluorescence and in situ hybridization studies indicate that Rpt1- and Rpt2-encoding messenger RNAs co-localize in these particles that contain, and are dependent on, Not1, the scaffold of the Ccr4-Not complex. We refer to these particles as Not1-containing assemblysomes, as they are smaller than and distinct from other RNA granules such as stress granules and GW- or P-bodies. Synthesis of Rpt1 with ribosome pausing and Not1-containing assemblysome induction is conserved from yeast to human cells.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Algoritmos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Genoma Fúngico/genética , Humanos , Hibridização In Situ , Masculino , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Front Genet ; 8: 61, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588606

RESUMO

The NOT genes encode subunits of the conserved Ccr4-Not complex, a global regulator of gene expression, and in particular of mRNA metabolism. They were originally identified in a selection for increased resistance to histidine starvation in the yeast S. cerevisiae. Recent work indicated that the Not5 subunit, ortholog of mammalian CNOT3, determines global translation levels by defining binding of the Ccr4-Not scaffold protein Not1 to ribosomal mRNAs during transcription. This is needed for optimal translation of ribosomal proteins. In this work we searched for mutations in budding yeast that were resistant to histidine starvation using the same selection that originally led to the isolation of the NOT genes. We thereby isolated mutations in ribosome-related genes. This common phenotype of ribosome mutants and not mutants is in good agreement with the positive role of the Not proteins for translation. In this regard, it is interesting that frequent mutations in RPL5 and RPL10 or in CNOT3 have been observed to accumulate in adult T-cell acute lymphoblastic leukemia (T-ALL). This suggests that in metazoans a common function implicating ribosome subunits and CNOT3 plays a role in the development of cancer. In this perspective we suggest that the Ccr4-Not complex, according to translation levels and fidelity, could itself be involved in the regulation of amino acid biosynthesis levels. We discuss how this could explain why mutations have been identified in many cancers.

12.
Nucleic Acids Res ; 45(3): 1186-1199, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180299

RESUMO

Acetylation of histones regulates gene expression in eukaryotes. In the yeast Saccharomyces cerevisiae it depends mainly upon the ADA and SAGA histone acetyltransferase complexes for which Gcn5 is the catalytic subunit. Previous screens have determined that global acetylation is reduced in cells lacking subunits of the Ccr4­Not complex, a global regulator of eukaryotic gene expression. In this study we have characterized the functional connection between the Ccr4­Not complex and SAGA. We show that SAGA mRNAs encoding a core set of SAGA subunits are tethered together for co-translational assembly of the encoded proteins. Ccr4­Not subunits bind SAGA mRNAs and promote the co-translational assembly of these subunits. This is needed for integrity of SAGA. In addition, we determine that a glycolytic enzyme, the glyceraldehyde-3-phosphate dehydrogenase Tdh3, a prototypical moonlighting protein, is tethered at this site of Ccr4­Not-dependent co-translational SAGA assembly and functions as a chaperone.


Assuntos
Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/genética , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Modelos Biológicos , Mutação , Multimerização Proteica/genética , Subunidades Proteicas , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/química , Ribonucleases/genética , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Transativadores/química , Fatores de Transcrição/química
13.
Bioessays ; 38(10): 997-1002, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27545501

RESUMO

In a recent issue of Nature Communications Ukleja and co-workers reported a cryo-EM 3D reconstruction of the Ccr4-Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4-Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4-Not complex interacts with the 5' and 3' ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4-Not complex that need to be addressed in the future.


Assuntos
RNA Mensageiro/genética , Schizosaccharomyces/genética , Citoplasma , Regulação da Expressão Gênica
14.
Cell Rep ; 15(8): 1782-94, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184853

RESUMO

The current understanding of gene expression considers transcription and translation to be independent processes. Challenging this notion, we found that translation efficiency is determined during transcription elongation through the imprinting of mRNAs with Not1, the central scaffold of the Ccr4-Not complex. We determined that another subunit of the complex, Not5, defines Not1 binding to specific mRNAs, particularly those produced from ribosomal protein genes. This imprinting mechanism specifically regulates ribosomal protein gene expression, which in turn determines the translational capacity of cells. We validate our model by SILAC and polysome profiling experiments. As a proof of concept, we demonstrate that enhanced translation compensates for transcriptional elongation stress. Taken together, our data indicate that in addition to defining mRNA stability, components of the Ccr4-Not imprinting complex regulate RNA translatability, thus ensuring global gene expression homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Biossíntese de Proteínas , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Núcleo Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Ligação Proteica/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Regulação para Cima/genética
15.
Biochem Soc Trans ; 43(6): 1253-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26614669

RESUMO

In this mini-review, we summarize our current knowledge about the cross-talk between the different levels of gene expression. We introduce the Ccr4 (carbon catabolite repressed 4)-Not (negative on TATA-less) complex as a candidate to be a master regulator that orchestrates between the different levels of gene expression. An integrated view of the findings about the Ccr4-Not complex suggests that it is involved in gene expression co-ordination. Since the discovery of the Not proteins in a selection for transcription regulators in yeast [Collart and Struhl (1994) Genes Dev. 8: , 525-537], the Ccr4-Not complex has been connected to every step of the mRNA lifecycle. Moreover, it has been found to be relevant for appropriate protein folding and quaternary protein structure by being involved in co-translational protein complex assembly.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Repressoras/genética , Ribonucleases/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Proteínas de Ciclo Celular/metabolismo , Células Eucarióticas/metabolismo , Regulação da Expressão Gênica , Modelos Genéticos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
16.
PLoS Genet ; 10(10): e1004569, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340856

RESUMO

Recent studies have suggested that a sub-complex of RNA polymerase II composed of Rpb4 and Rpb7 couples the nuclear and cytoplasmic stages of gene expression by associating with newly made mRNAs in the nucleus, and contributing to their translation and degradation in the cytoplasm. Here we show by yeast two hybrid and co-immunoprecipitation experiments, followed by ribosome fractionation and fluorescent microscopy, that a subunit of the Ccr4-Not complex, Not5, is essential in the nucleus for the cytoplasmic functions of Rpb4. Not5 interacts with Rpb4; it is required for the presence of Rpb4 in polysomes, for interaction of Rpb4 with the translation initiation factor eIF3 and for association of Rpb4 with mRNAs. We find that Rpb7 presence in the cytoplasm and polysomes is much less significant than that of Rpb4, and that it does not depend upon Not5. Hence Not5-dependence unlinks the cytoplasmic functions of Rpb4 and Rpb7. We additionally determine with RNA immunoprecipitation and native gel analysis that Not5 is needed in the cytoplasm for the co-translational assembly of RNA polymerase II. This stems from the importance of Not5 for the association of the R2TP Hsp90 co-chaperone with polysomes translating RPB1 mRNA to protect newly synthesized Rpb1 from aggregation. Hence taken together our results show that Not5 interconnects translation and transcription.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Núcleo Celular/genética , Citoplasma/genética , Fator de Iniciação 3 em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Polirribossomos/genética , RNA Polimerase II/genética , Estabilidade de RNA , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
17.
Gene ; 509(1): 60-7, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22903034

RESUMO

During transcription cycles serine side chains in the carboxyl terminal domain (CTD) of the largest subunit of RNA polymerase II undergo dynamic phosphorylation-de-phosphorylation changes, and the modification status of the CTD serves as a signal for proteins involved in transcription and RNA maturation. We show here that the major CTD de-phosphorylating enzyme Fcp1 is expressed at high levels in germline cells of Drosophila. We used transgene constructs to modify the Fcp1 phosphatase level in Drosophila ovaries and found that high levels of Fcp1 are required for intensive gene expression in nurse cells. On the contrary, low Fcp1 levels might limit the rate of transcription. Fcp1 over-expression results in increased expression of microtubules in nurse cells. Our results show that tightly controlled high level Fcp1 expression in the nurse cells of Drosophila ovaries is required for proper egg maturation.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Oogênese/genética , Oogênese/fisiologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA/genética , Drosophila melanogaster/citologia , Feminino , Técnicas de Inativação de Genes , Genes de Insetos , Ovário/citologia , Ovário/metabolismo , RNA Polimerase I/genética , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/química , Transcrição Gênica
18.
Mech Dev ; 128(3-4): 191-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21272635

RESUMO

Importin-ß is encoded by the Ketel gene in Drosophila. Upon running out of the maternal Importin-ß dowry larvae without the Ketel gene slow down and before dying possess symptoms characteristic for mitochondrial cytopathies. Death of the larvae is almost certainly the consequence of ceasing import of proteins, including some of the transcription factors, into the nuclei. We report here that the ensuing altered gene expression pattern leads to cessation of mitochondrial biogenesis. A transcriptome comparison between larvae with and without Ketel gene revealed altered expression level for 30 genes that are all nuclear. The seven downregulated genes have C/EBP transcription factor binding site in their promoter. RNAi silencing the function of peroxiredoxin-6005, one of the 23 upregulated genes, leads to excessive mitochondrial biogenesis, free radical production and death of the larvae. It appears that peroxiredoxin-6005 is engaged in mitochondrial biogenesis possibly as a component of redox-signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Mitocôndrias/fisiologia , Peroxirredoxinas/metabolismo , beta Carioferinas/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Trato Gastrointestinal/citologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Túbulos de Malpighi/metabolismo , Azul de Metileno/metabolismo , Oxirredução , Peroxirredoxinas/genética , Regiões Promotoras Genéticas , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , beta Carioferinas/genética
19.
Mech Dev ; 125(9-10): 822-31, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18656533

RESUMO

Importin-beta, encoded by the Ketel gene in Drosophila, is a key component of nuclear protein import, the formation of the spindle microtubules and the assembly of the nuclear envelope. The Drosophila embryos rely on the maternal importin-beta dowry at the beginning of their life. Expression of the zygotic Ketel gene commences during gastrulation in every cell and while the expression is maintained in the mitotically active diploid cells it ceases in the non-dividing larval cells in which nuclear protein import is assured by the long persisting importin-beta molecules. How is the expression of the Ketel gene regulated? In silico analysis revealed several conserved transcription factor binding sequences in the Ketel gene promoter. Reporter genes in which different segments of the promoter ensured transient expression of the luciferase gene in S2 cells identified the sequences required for normal Ketel gene expression level. Gel retardation and band shift assays revealed that the DREF and the CFDD transcription factors play key roles in the regulation of Ketel gene expression. Transgenic LacZ reporter genes revealed the sequences that ensure tissue-specific gene expression. Apparently, the regulation of Ketel gene expression depends largely on a DRE motif and action of the DREF, CFDD, CF2-II and BEAF transcription factors.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Sequências Reguladoras de Ácido Nucleico/genética , beta Carioferinas/genética , Animais , Sítios de Ligação , Núcleo Celular/genética , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Embrião não Mamífero/metabolismo , Genes Reporter , Luciferases/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Deleção de Sequência , Fatores de Transcrição/metabolismo , Transgenes
20.
Mech Dev ; 125(3-4): 196-206, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18221858

RESUMO

Importin-beta is an essential component of nuclear protein import, spindle formation and nuclear envelope assembly. Formerly, the function of the Drosophila Ketel gene, which encodes importin-beta and is essential for the survival to adulthood, seemed to be required only in the mitotically active cells. We report here that importin-beta function is required in every cell and that this protein possesses an exceptionally long life span. Mosaic analysis, using gynanders, indicated that zygotic function of the Ketel gene is essential in a large group of cells in the embryos. Expression of a UAS-Ketel transgene by different tissue specific Gal4 drivers on ketel(null)/- hemizygous background revealed the requirement of Ketel gene function in the ectoderm. Elimination of the Ketel gene function using a UAS-Ketel-RNAi transgene driven by different Gal4 drivers confirmed the indispensability of the Ketel gene in the ectoderm. Using GFP-tagged importin-beta (encoded by a ketel(GFP) allele) we revealed that the maternally provided GFP-importin-beta molecules persist up to larval life. The zygotic Ketel gene is expressed in every cell during early gastrulation. Although the gene is then turned off in the non-dividing cells, the produced importin-beta molecules persist long and carry out nuclear protein import throughout the subsequent stages of development. In the continuously dividing diploid cells, the Ketel gene is constitutively expressed to fulfill all three functions of importin-beta.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Gástrula/crescimento & desenvolvimento , Zigoto/metabolismo , beta Carioferinas/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Sobrevivência Celular , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , beta Carioferinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...